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Overview

Brief review of Leavitt path algebras

Chen simple modules

Ext1LK (E)(S ,T ) for varous simple LK (E )-modules S ,T

Prüfer modules

Injective modules over LK (E )
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The algebra LK (E )

Throughout, K is a field.

Let E = (E 0,E 1, s, r) be a directed graph. •s(e) e // •r(e)

The extended graph of E is the graph Ê = (E 0,E 1 ∪ (E 1)∗, s ′, r ′),
with

(E 1)∗ = {e∗ | e ∈ E 1},

r ′|E1
= r , s ′|E1

= s, r ′(e∗) = s(e), s ′(e∗) = r(e).

The Leavitt path algebra LK (E ) of E over K is the K -path

algebra K Ê modulo the relations:

e∗e ′ = δe,e′r(e) for any e, e ′ ∈ E 1

v =
∑
{e∈E1|s(e)=v} ee∗ (for any v ∈ E 0 with 0 < |s−1(v)| <∞.)
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with

(E 1)∗ = {e∗ | e ∈ E 1},

r ′|E1
= r , s ′|E1

= s, r ′(e∗) = s(e), s ′(e∗) = r(e).

The Leavitt path algebra LK (E ) of E over K is the K -path
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Chen simple modules and Prüfer modules over Leavitt path algebras



The algebra LK (E )

Throughout, K is a field.

Let E = (E 0,E 1, s, r) be a directed graph. •s(e) e // •r(e)

The extended graph of E is the graph Ê = (E 0,E 1 ∪ (E 1)∗, s ′, r ′),
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Chen simple modules and Prüfer modules over Leavitt path algebras



The algebra LK (E )

Throughout, K is a field.

Let E = (E 0,E 1, s, r) be a directed graph. •s(e) e // •r(e)

The extended graph of E is the graph Ê = (E 0,E 1 ∪ (E 1)∗, s ′, r ′),
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Notation

A path σ = e1e2 · · · en in E is closed if r(en) = s(e1).

A closed path σ is basic if σ 6= βm for any closed path β and
integer m ≥ 2.

If α ∈ Path(E ), the element α ∈ LK (E ) is called a real path.

If β = e1e2 · · · en ∈ Path(E ), the element
β∗ = e∗n · · · e∗2e∗1 ∈ LK (E ) is called a ghost path.

Let M be a left LK (E )-module and m ∈ M. Denote by

ρ̂m : LK (E )→ M, r 7→ rm.

For a vertex v ∈ E 0, denote by

ρm : LK (E )v → M, x 7→ xm.

Note: Every x ∈ LK (E ) can be written as x =
∑n

i=1 kiαiβ
∗
i , where

0 6= ki ∈ K and αi , βi ∈ Path(E ).
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Infinite paths

An infinite path in E is a sequence p = e1e2e3 · · · , where
ei ∈ E 1 for all i ∈ N, and for which s(ei+1) = r(ei ) for all
i ∈ N.

Warning: An infinite path is not an element of
LK (E ). Note: If v is a sink, we also view v = vvv · · · as an
infinite path.

E∞ denotes the set of infinite paths in E .

Let c be a closed path in E . Denote ccc · · · by c∞.

If p = e1e2e3 · · · ∈ E∞ and n ∈ N, denote by τ>n(p) the
infinite path en+1en+2 · · · .
If p, q ∈ E∞, p and q are tail equivalent (p ∼ q) if there exist
integers m, n for which τ>m(p) = τ>n(q)

p ∈ E∞ is rational if p ∼ c∞ for some closed path c . p ∈ E∞

is irrational if it is not rational.
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Example

Let R2 denote the graph

•ve 88 fff .

Any path of the form ef i for i ∈ Z+ is a basic closed path in
Path(R2).

For any i ∈ Z+, ci = (ef i )
∞

is a rational infinite path. Note
that ci ∼ cj if and only if i = j .

q = efeffefffeffffe · · · is an irrational infinite path in R∞2 .
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Chen simple modules

Let p ∈ E∞. Let V[p] denote the K -vector space with basis the
distinct elements of E∞ which are tail-equivalent to p.

For any
v ∈ E 0, e ∈ E 1, and q = f1f2f3 · · · with q ∼ p, define

v ·q=

q if v = s(f1)

0 otherwise
e·q=

eq if r(e) = s(f1)

0 otherwise,
e∗·q=

τ>1(q) if e = f1

0 otherwise

The K -linear extension of this action endows V[p] with the
structure of a left LK (E )-module.
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Chen simple modules

Theorem: Let p ∈ E∞. Them the left LK (E )-module V[p] is
simple. If p, q ∈ E∞, then V[p]

∼= V[q] as left LK (E )-modules if
and only if p ∼ q, if and only if V[p] = V[q].

Idea: A linear combination of distinct paths tail equivalent to p
can be reduced to a single nonzero term by appropriate
multiplication. Then any path tail equivalent to p can be
generated from this single term via the module action.

X.W. Chen, “Irreducible representations of Leavitt path algebras”,
Forum Math. 27(1), 2015, 549–574.
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Chen simple modules

Note: Let w ∈ E 0 be a sink. We consider w = w∞ as an element
in E∞. The Chen simple module V[w∞] coincides with the ideal
LK (E )w .
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Example

Consider the graph R2

•ve 88 fff .

V[e∞], V[f∞], V[ef i∞] for any i ∈ Z+ are Chen simple modules
generated by a rational infinite path.

For q = efeffefffeffffe · · · , V[q] is a Chen simple module
generated by an irrational infinite path.
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Projective resolutions of Chen simple modules

Reminder: For a left R-module M, a projective resolution of M is
an exact sequence

· · ·Pn → Pn−1 → · · · → P2 → P1 → P0 → M → 0

where each Pi is a projective left R-module.
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Projective resolutions of Chen simple modules

Aim: To construct a projective resolution of any Chen simple
module V[p]. We have three cases:

1 V[w∞]
∼= LK (E )w where w is a sink,

2 V[c∞] where c is a basic closed path;

3 V[q] where q is an irrational infinite path.

Remark: Type (1) is trivial, since w is an idempotent and so the
left ideal LK (E )w is a projective left LK (E )-module. Type (3) is
interesting, but we won’t need it in the rest of the lecture, so
discussion omitted.
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Type (2)

Theorem: Let c be a basic closed path in E , with v = s(c).

1 A projective resolution of V[c∞] is given by

0 // LK (E )v
ρc−v // LK (E )v

ρc∞ // V[c∞]
// 0

2 If E is a finite graph, an alternate projective resolution of
V[c∞] is given by

0 // LK (E )
ρ̂c−1 // LK (E )

ρ̂c∞ // V[c∞]
// 0

In particular, the Chen simple module V[c∞] is finitely presented.
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Example

Consider theToeplitz graph

•ve 88
f // w .

and the Chen simple module V[e∞]. Then

0 // LK (E )v
ρe−v // LK (E )v

ρe∞ // V[e∞]
// 0

0 // LK (E )
ρ̂e−1 // LK (E )

ρ̂e∞ // V[e∞]
// 0

are projective resolutions of the finitely presented module V[e∞].
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Chen simple modules and Prüfer modules over Leavitt path algebras



Proof

Main points of the proof:

Since (c − v)c∞ = c∞− c∞, we get LK (E )(c − v) ⊆ Ker(ρc∞).

The inclusion Ker(ρc∞) ⊆ LK (E )(c − v) follows analyzing the
shape of the standard form monomials in Ker(ρc∞)

By a degree argument, we get r(c − v) = 0 if and only if
r = 0. So the map ρc−v : LK (E )v → LK (E )v is a
monomorphism of left LK (E )-modules.
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The Ext groups

Aim: To describe Ext1LK (E)(S ,T ), where S and T are Chen simple

modules over LK (E ), for E finite.

Remarks:

the abelian group Ext1LK (E)(S ,T ) has a natural structure of
K -vector space

Ext1LK (E)(S ,T ) 6= 0 if and only if there exists a non-splitting
short exact sequence 0→ T → N → S → 0

If w is a sink, then Ext1LK (E)(V[w∞],M) = 0 for any M.
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Chen simple modules and Prüfer modules over Leavitt path algebras



The Ext groups

Aim: To describe Ext1LK (E)(S ,T ), where S and T are Chen simple

modules over LK (E ), for E finite.

Remarks:

the abelian group Ext1LK (E)(S ,T ) has a natural structure of
K -vector space

Ext1LK (E)(S ,T ) 6= 0 if and only if there exists a non-splitting
short exact sequence 0→ T → N → S → 0

If w is a sink, then Ext1LK (E)(V[w∞],M) = 0 for any M.

Gene Abrams (joint work with F. Mantese and A. Tonolo)
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When S is of type (2)

Let T be a Chen simple module. Let U(T ) := {v ∈ E 0 | vT 6= {0}}.

Assume T = V[q], for q ∈ E∞. Then v ∈ U(T ) if and only if there
is an infinite path tail-equivalent to q starting from v .

Theorem: (A-, Mantese, Tonolo, 2015) Let E be a finite graph.
Let d be a basic closed path in E and let T be a Chen simple
module. Then the following are equivalent:

1 Ext1LK (E)(V[d∞],T ) 6= 0.

2 s(d) ∈ U(T ).

Corollary: Let E be a finite graph. Let d be a basic closed path.
Then Ext1LK (E)(V[d∞],V[d∞]) 6= 0. In particular, V[d∞] is neither
projective, nor injective.
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Chen simple modules and Prüfer modules over Leavitt path algebras



When S is of type (2)

Let T be a Chen simple module. Let U(T ) := {v ∈ E 0 | vT 6= {0}}.

Assume T = V[q], for q ∈ E∞. Then v ∈ U(T ) if and only if there
is an infinite path tail-equivalent to q starting from v .

Theorem: (A-, Mantese, Tonolo, 2015) Let E be a finite graph.
Let d be a basic closed path in E and let T be a Chen simple
module. Then the following are equivalent:

1 Ext1LK (E)(V[d∞],T ) 6= 0.

2 s(d) ∈ U(T ).

Corollary: Let E be a finite graph. Let d be a basic closed path.
Then Ext1LK (E)(V[d∞],V[d∞]) 6= 0. In particular, V[d∞] is neither
projective, nor injective.

Gene Abrams (joint work with F. Mantese and A. Tonolo)
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Example

Consider the graph R2:

•ve 88 fff

Let q ∈ R∞2 and let T = V[q]. Let d be a basic closed path in R2.
Since v = s(d) ∈ U(T ) = {v}, the previous theorem applies and
hence Ext1LK (R2)

(V[d∞],T ) 6= 0.
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Chen simple modules and Prüfer modules over Leavitt path algebras



Proof: main points

Let E be a finite graph. Let d be a basic closed path in E and let
T be a Chen simple module. Consider the projective resolution

0 // LK (E )
ρ̂d−1 // LK (E )

ρ̂d∞ // V[d∞]
// 0 and the resulting

standard long exact sequence

HomLK (E)(V[d∞ ],T )
ρ̂d∞∗ // HomLK (E)(LK (E),T )

ρ̂(d−1)∗ // HomLK (E)(LK (E),T )

π // Ext1LK (E)(V[d∞ ],T ) // Ext1LK (E)(LK (E),T ) (=0) // · · ·

So for t ∈ T ,

π(ρ̂t) = 0 ⇔
ρ̂(d−1)∗(f ) = ρ̂t for some f = ρ̂X ∈ HomLK (E)(LK (E ),T ) ⇔

the equation (d − 1)X = t has a solution in T .
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Chen simple modules and Prüfer modules over Leavitt path algebras



Proof: main points

Let E be a finite graph. Let d be a basic closed path in E and let
T be a Chen simple module. Consider the projective resolution

0 // LK (E )
ρ̂d−1 // LK (E )

ρ̂d∞ // V[d∞]
// 0 and the resulting

standard long exact sequence

HomLK (E)(V[d∞ ],T )
ρ̂d∞∗ // HomLK (E)(LK (E),T )

ρ̂(d−1)∗ // HomLK (E)(LK (E),T )

π // Ext1LK (E)(V[d∞ ],T ) // Ext1LK (E)(LK (E),T ) (=0) // · · ·

So for t ∈ T ,

π(ρ̂t) = 0 ⇔
ρ̂(d−1)∗(f ) = ρ̂t for some f = ρ̂X ∈ HomLK (E)(LK (E ),T ) ⇔

the equation (d − 1)X = t has a solution in T .

Gene Abrams (joint work with F. Mantese and A. Tonolo)
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Proof: main points

So we get:

Proposition: Ext1LK (E)(V[d∞],T ) = 0 if and only if (d − 1)X = t has
a solution in T for every t ∈ T .

But then it’s not hard to show:

Lemma:

1) Let T = V[q], with V[q] 6= V[d∞]. Suppose s(d) ∈ U(T ). Let
t ∈ T be “not divisible” by d . Then the equation (d − 1)X = t has
no solution in T

2) The equation (d − 1)X = d∞ has no solution in V[d∞]. �
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Chen simple modules and Prüfer modules over Leavitt path algebras



Proof: main points

So we get:

Proposition: Ext1LK (E)(V[d∞],T ) = 0 if and only if (d − 1)X = t has
a solution in T for every t ∈ T .

But then it’s not hard to show:

Lemma:

1) Let T = V[q], with V[q] 6= V[d∞]. Suppose s(d) ∈ U(T ). Let
t ∈ T be “not divisible” by d . Then the equation (d − 1)X = t has
no solution in T

2) The equation (d − 1)X = d∞ has no solution in V[d∞]. �

Gene Abrams (joint work with F. Mantese and A. Tonolo)
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Prüfer modules

In particular, we have

Corollary: For d a cycle in E , the left LK (E )-module V[d∞] is
(simple and) not injective.

Question: What is the injective hull of V[d∞]?

Recall: ρ̂d−1 : LK (E )→ LK (E ) is a monomorphism. (In other
words, d − 1 is not a right zero-divisor in LK (E ).) Moreover,

V[d∞]
∼= LK (E )/LK (E )(d − 1).
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Prüfer modules

We look at the standard Prüfer abelian groups for guidance.

p denotes a prime in Z.

Z/pZ ↪→ Z/p2Z ↪→ Z/p3Z ↪→ · · ·

The embedding is a + piZ 7→ pa + pi+1Z
The Prüfer p-group is

Z(p∞) =
∞⋃
i=1

Z/piZ

Another point of view: Z(p∞) = { a
pi
|i ∈ N}, with addition mod Z.

Gene Abrams (joint work with F. Mantese and A. Tonolo)

Chen simple modules and Prüfer modules over Leavitt path algebras



Prüfer modules

Well-known properties of Z(p∞):

1) Z(p∞) is divisible as a Z-module: for every z ∈ Z and
t ∈ Z(p∞) the equation zX = t has a solution in Z(p∞). In
particular, Z(p∞) is injective as a Z-module.

2) The only proper subgroups of Z(p∞) are the Z/piZ (i ∈ N). In
particular, Z(p∞) has d.c.c., but not a.c.c., on submodules.

3) Each of the quotients Z/pi+1Z
/
Z/piZ is isomorphic to Z/pZ

4) Z(p∞)
/
Z/piZ ∼= Z(p∞) for all i ∈ N.

5) The equation pX = 1 + piZ has no solution in Z/piZ.
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3) Each of the quotients Z/pi+1Z
/
Z/piZ is isomorphic to Z/pZ

4) Z(p∞)
/
Z/piZ ∼= Z(p∞) for all i ∈ N.

5) The equation pX = 1 + piZ has no solution in Z/piZ.
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6) EndZ(Z(p∞)) is the ring of p-adic integers; think of this as
“formal power series in p”, with coefficients in {0, 1, . . . , p − 1}

OR, think of it as an inverse limit of the rings / maps

· · · → Z/p3Z→ Z/p2Z→ Z/p1Z.
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Prüfer modules

We can do this in general.

Proposition: Suppose a ∈ R has these two properties:

(1) R/Ra is a simple left R-module, and

(2) for every i ∈ N, the equation aX = 1 + Rai has no solution in
R/Rai .

Then the direct limit UR,a of the sequence

R/Ra ↪→ R/Ra2 ↪→ R/Ra3 ↪→ · · ·

has structural properties analogous to those for Z(p∞) given
above.
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Now we apply these ideas to the specific case where

R = LK (E ), a = c − 1

where c is a cycle in the finite graph E .

LK (E)/LK (E)(c − 1) ↪→ LK (E)/LK (E)(c − 1)2 ↪→ LK (E)/LK (E)(c − 1)3 ↪→ · · ·

Denote the direct limit of this sequence by UE ,c−1.
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We already have property (1):

LK (E )/LK (E )(c − 1) is a simple left LK (E )-module, because it is
isomorphic to V[c∞].

For property (2):

Proposition: For any basic closed path c in E , the equation

(c − 1)X = 1 + LK (E )(c − 1)n

has NO solution in LK (E )/LK (E )(c − 1)n.

Idea of proof: Establish a “Division Algorithm by c − 1” inside
LK (E ). (Messy, but relatively straightforward.)
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Chen simple modules and Prüfer modules over Leavitt path algebras
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Proposition: Let E be a finite graph, let c be a basic closed path
in E based at v , and let UE ,c−1 be the Prüfer module associated
to c . Suppose that there exists a cycle d 6= c which connects to v .
Then UE ,c−1 is not injective.
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Proof: By work on Ext1 groups described previously (using the
hypothesis that d connects to v),

Ext1(V[d∞],V[c∞]) 6= 0.

Let α1 denote 1 + LK (E )(c − 1). We get

0→ V[c∞]
∼= LK (E)α1

� � // UE ,c−1
// // UE ,c−1/LK (E)α1

∼= UE ,c−1 → 0

But Hom(V[d∞],UE ,c−1) = 0, because the only simple submodule
of UE ,c−1 is isomorphic to V[c∞] 6∼= V[d∞].
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This gives the resulting long exact sequence

HomLK (E)(V[d∞ ],V[c∞ ])
// HomLK (E)(V[d∞ ],UE,c−1)

// HomLK (E)(V[d∞ ],UE,c−1) (=0)

π // Ext1LK (E)(V[d∞ ],V[c∞ ]) ( 6=0) // Ext1LK (E)(V[d∞ ],UE,c−1)
// Ext1(V[d∞ ],UE,c−1)

Consequently, Ext1(V[d∞],UE ,c−1) 6= 0, so that UE ,c−1 is not
injective.
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Prüfer modules

This gives the resulting long exact sequence

HomLK (E)(V[d∞ ],V[c∞ ])
// HomLK (E)(V[d∞ ],UE,c−1)

// HomLK (E)(V[d∞ ],UE,c−1) (=0)

π // Ext1LK (E)(V[d∞ ],V[c∞ ]) ( 6=0) // Ext1LK (E)(V[d∞ ],UE,c−1)
// Ext1(V[d∞ ],UE,c−1)

Consequently, Ext1(V[d∞],UE ,c−1) 6= 0, so that UE ,c−1 is not
injective.

Gene Abrams (joint work with F. Mantese and A. Tonolo)
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On the other hand what happens when there is NO cycle d which
connects to c?

Call such a cycle c maximal.

Example: The Toeplitz graph

T = •c 99 // •

(The Leavitt path algebra LK (T ) is isomorphic to the Jacobson
algebra K 〈X ,Y |XY = 1〉.)
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Main Theorem: Let E be a finite graph and let c be a basic
closed path in E . Let UE ,c−1 be the Prüfer module associated to
c . Then UE ,c−1 is injective if and only if c is a maximal cycle.

Moreover, in case UE ,c−1 is injective, then:

(1) UE ,c−1 is the injective envelope of the Chen simple module
V[c∞], and

(2) EndLK (E)(UE ,c−1) is isomorphic to the ring K [[x ]] of formal
power series in x .

Gene Abrams (joint work with F. Mantese and A. Tonolo)
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c . Then UE ,c−1 is injective if and only if c is a maximal cycle.

Moreover, in case UE ,c−1 is injective, then:

(1) UE ,c−1 is the injective envelope of the Chen simple module
V[c∞], and

(2) EndLK (E)(UE ,c−1) is isomorphic to the ring K [[x ]] of formal
power series in x .

Gene Abrams (joint work with F. Mantese and A. Tonolo)
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One direction? Done above.

Other direction?

Two steps: Reduce to the case when c is a source loop. Then
prove the result in this case.
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Proposition:

1) Source elimination is a Morita equivalence, and preserves Prüfer
modules.

2) Reduction of a source cycle to a source loop is a Morita
equivalence, and preserves Prüfer modules.

Proof: Omitted. Not too difficult.
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We analyze specific elements.

Proposition: Let c be a source loop. Let j ∈ AnnLK (E)(UE ,c−1).
Then there exists n ∈ N such that c∗nj = 0.

Proof: It is not hard to show that any nonzero
j ∈ AnnLK (E)(UE ,c−1) is a K -linear combination of elements of the
form

αβ∗wγδ∗ 6= 0,

where w 6= s(c). Now consider cases.

1) If αβ∗w = w then c∗αβ∗wγδ∗ = c∗wγδ∗ = 0.

2) If αβ∗w = β∗w 6= w then s(β∗) = r(β) 6= s(c), otherwise β
would be a path which starts in w and ends at s(c), contrary to c
being a source loop. Then c∗αβ∗wγδ∗ = c∗β∗wγδ∗ = 0.
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3) In all the other cases α = ctη1 · · · ηs with c 6= η1 ∈ E 1, t ≥ 0
and s ≥ 1. Then

(ct+1)∗αβ∗wγδ∗ = (ct+1)∗ctη1 · · · ηsβ∗wγδ∗ = c∗η1 · · · ηsβ∗wγδ∗ = 0.

Since j is a finite sum of terms of the form αβ∗wγδ∗, the result
follows.
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Prüfer modules

Proposition: For any ` ∈ LK (E ) \AnnLK (E)(UE ,c−1) and for any
u ∈ UE ,c−1, there exists X ∈ UE ,c−1 such that `X = u. That is, u
is divisible by any element in LK (E ) \AnnLK (E)(UE ,c−1).

Idea of Proof: It can be shown that

AnnLK (E)(UE ,c−1) =
⋂
n≥1

LK (E )(c − 1)n = 〈E 0 \ s(c)〉.

Then using the “Division Algorithm” for c − 1 (and some
computation) yields the result.
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Corollary: If 0 6= u ∈ UE ,c−1 then (c∗)mu 6= 0 for all m ∈ N.

Proof: Since c /∈ LK (E )(c − 1) ⊇ AnnLK (E)(UE ,c−1), by previous
Proposition there exists 0 6= x ∈ UE ,c−1 with

cx = u.

We may assume that s(c)x = x . Then

0 6= x = s(c)x = c∗cx = c∗u.

Repeating the same argument for 0 6= c∗u ∈ UE ,c−1, we get
(c∗)2u 6= 0. Now continue.
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Key Proposition: Let c be a source loop in E . Let If be a finitely
generated left ideal of LK (E ), and let ϕ : If → UE ,c−1 be a
LK (E )-homomorphism. Then there exists ψ : LK (E )→ UE ,c−1
such that ψ|If = ϕ. Consequently,

Ext1(LK (E )/If ,UE ,c−1) = 0.

Proof: By the result presented in this morning’s lecture, we
know that LK (E ) is a Bézout ring, i.e., that every finitely
generated left ideal of LK (E ) is principal.

So If = LK (E )` for some ` ∈ If .
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Assume on one hand that ` ∈ AnnLK (E)(UE ,c−1), and hence
If ≤ AnnLK (E)(UE ,c−1).

But we know these two things:

1) Any element of AnnLK (E)(UE ,c−1) is annihilated by some c∗N ,
and

2) c∗nu 6= 0 for all 0 6= u ∈ UE ,c−1 and n ∈ N.
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But then for ϕ ∈ HomLK (E)(If ,UE ,c−1) we see that ϕ(`) = 0.
Here’s why:

Otherwise, if ϕ(`) 6= 0, then (c∗)nϕ(`) 6= 0 for all n;

but ` ∈ AnnLK (E)(UE ,c−1) gives (c∗)N` = 0 for some N, so that

0 = ϕ((c∗)N`) = (c∗)Nϕ(`), a contradiction.

And ϕ(`) = 0 gives ϕ = 0, because If is generated by `. Thus in
this case we must have HomLK (E)(If ,UE ,c−1) = 0, and the
conclusion follows trivially.
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Assume on the other hand that ` /∈ AnnLK (E)(UE ,c−1).
But then there exists x ∈ UE ,c−1 for which `x = ϕ(`).

Let ψ : LK (E )→ UE ,c−1 be the map ρx . Then, for each
i = r` ∈ If , we have

ψ(i) = ψ(r`) = r`ψ(1) = r`x = ϕ(`) = ϕ(r`) = ϕ(i),

and so ϕ extends in this case as well.
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Proposition: Let E be a finite graph, and c a source loop in E .
Then the endomorphism ring of the left LK (E )-module UE ,c−1 is
isomorphic to the ring of formal power series K [[x ]].

Proof omitted, but it’s not too hard.
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We need one more tool.

We know the entire lattice of proper submodules of UE ,c−1 as a left
LK (E )-module, it consists precisely of the LK (E )/LK (E )(c − 1)i .

But UE ,c−1 is a right module over its endomorphism ring S , which
is isomorphic to K [[x ]].

Proposition: Each LK (E )/LK (E )(c − 1)i is a right S-submodule
of UE ,c−1, and these are ALL the right S-submodules of UE ,c−1.
In particular, (UE ,c−1)S is artinian.

Proof: Not hard.
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Here’s why we care about the right S-structure of UE ,c−1:

This property implies that the functor Ext1(−,UE ,c−1) sends direct
limits to inverse limits.

(More details: If a module is linearly compact over its
endomorphism ring, then it is algebraically compact and hence
pure-injective. But for a pure-injective left R-module M, the
functor Ext1(−,M) sends direct limits to inverse limits.)
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Finally, we get the result.

Theorem: Let E be a finite graph with source loop c. Then the
Prüfer module UE ,c−1 is injective. Indeed, UE ,c−1 is the injective
envelope of V[c∞].
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Prüfer modules (Key Prop.) Ext1(LK (E )/If ,UE ,c−1) = 0.

Proof: In order to check the injectivity of UE ,c−1, we apply Baer’s
Lemma; that is, we need only check that UE ,c−1 is injective
relative to any short exact sequence of the form

0→ I → LK (E )→ LK (E )/I → 0.

This is equivalent to showing that Ext1LK (E)(LK (E )/I ,UE ,c−1) = 0
for any left ideal I of LK (E ).

Write I = lim−→ Iλ, where the Iλ are the finitely generated
submodules of I . It is standard that

LK (E )/I = lim−→ LK (E )/Iλ.
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Prüfer modules (Key Prop.) Ext1(LK (E )/If ,UE ,c−1) = 0.

So now applying the functor Ext1LK (E)(−,UE ,c−1), we get:

Ext1LK (E)(LK (E )/I ,UE ,c−1)

= Ext1LK (E)(lim−→ LK (E )/Iλ,UE ,c−1)

= lim←−Ext1(LK (E )/Iλ,UE ,c−1) (by Proposition above)

= lim←− 0 = 0. (by Key Proposition)

Since LK (E )α1 is an essential submodule of UE ,c−1, the last
statement follows.
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= lim←−Ext1(LK (E )/Iλ,UE ,c−1) (by Proposition above)

= lim←− 0 = 0. (by Key Proposition)

Since LK (E )α1 is an essential submodule of UE ,c−1, the last
statement follows.

Gene Abrams (joint work with F. Mantese and A. Tonolo)

Chen simple modules and Prüfer modules over Leavitt path algebras
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